">澳门娱乐_威尼斯人游戏注册

您现在的位置:主页 > 高起点辅导 > 数学辅导 >  > 正文

其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A As

2019-07-03 11:44http://www.baidu.com四川成人高考网

当x+y+z=n(nZ)时,下面是学习方法网为大家整理的三角函数公式大全: 锐角三角函数公式 sin =的对边 / 斜边 cos =的邻边 / 斜边 tan =的对边 / 的邻边 cot =的邻边 / 的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3=4sinsin(/3+)sin(/3-) cos3=4coscos(/3+)cos(/3-) tan3a = tan a tan(/3+a) tan(/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B 降幂公式 sin^2()=(1-cos(2))/2=versin(2)/2 cos^2()=(1+cos(2))/2=covers(2)/2 tan^2()=(1-cos(2))/(1+cos(2)) 推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos^2 1-cos2=2sin^2 1+sin=(sin/2+cos/2)^2 =2sina(1-sinsup2;a)+(1-2sinsup2;a)sina =3sina-4sinsup3;a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cossup2;a-1)cosa-2(1-sinsup2;a)cosa =4cossup3;a-3cosa sin3a=3sina-4sinsup3;a =4sina(3/4-sinsup2;a) =4sina[(3/2)sup2;-sinsup2;a] =4sina(sinsup2;60-sinsup2;a) =4sina(sin60+sina)(sin60-sina) =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a) cos3a=4cossup3;a-3cosa =4cosa(cossup2;a-3/4) =4cosa[cossup2;a-(3/2)sup2;] =4cosa(cossup2;a-cossup2;30) =4cosa(cosa+cos30)(cosa-cos30) =4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30) =-4cosasin[90-(60-a)]sin[-90+(60+a)] =-4cosacos(60-a)[-cos(60+a)] =4cosacos(60-a)cos(60+a) 上述两式相比可得 tan3a=tanatan(60-a)tan(60+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 学习方法网[] 三角和 sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 两角和差 cos(+)=coscos-sinsin cos(-)=coscos+sinsin sin()=sincoscossin tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 和差化积 sin+sin = 2 sin[(+)/2] cos[(-)/2] sin-sin = 2 cos[(+)/2] sin[(-)/2] cos+cos = 2 cos[(+)/2] cos[(-)/2] cos-cos = -2 sin[(+)/2] sin[(-)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinsin = [cos(-)-cos(+)] /2 coscos = [cos(+)+cos(-)]/2 sincos = [sin(+)+sin(-)]/2 cossin = [sin(+)-sin(-)]/2 诱导公式 sin(-) = -sin cos(-) = cos tan (a)=-tan sin(/2-) = cos cos(/2-) = sin sin(/2+) = cos cos(/2+) = -sin sin(-) = sin cos(-) = -cos sin(+) = -sin cos(+) = -cos tanA= sinA/cosA tan(/2+)=-cot tan(/2-)=cot tan(-)=-tan tan(+)=tan 诱导公式记背诀窍:奇变偶不变,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及 sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ,符号看象限 万能公式 sin=2tan(/2)/[1+tan^(/2)] cos=[1-tan^(/2)]/1+tan^(/2)] tan=2tan(/2)/[1-tan^(/2)] 其它公式 (1)(sin)^2+(cos)^2=1 (2)1+(tan)^2=(sec)^2 (3)1+(cot)^2=(csc)^2 证明下面两式, 三角函数看似很多,只需将一式,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=-C tan(A+B)=tan(-C) (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,很复杂。

但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系,左右同除(sin)^2,第二个除(cos)^2即可 (4)对于任意非直角三角形,。